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Introduction  

In this lab, we develop an adaptive FIR filter and showcase its utility in system identification and noise 

cancelling. Using the FIR filter developed in Lab 2, we implement the Least Mean Squares algorithm to 

turn the original FIR filter into an adaptive filter. Using our newly developed adaptive filter, we identify 

the functionality of several black box systems. Then, as a demonstration of a real-world use for adaptive 

filters, we use our adaptive filter to perform real-time noise cancelling. 

Background  

Least Mean Squares 

Our adaptive filter is implemented using the Least Mean Squares (LMS) algorithm. The goal of the LMS 

algorithm is to minimize the error signal being fed back into the adaptive filter. This is accomplished by 

updating the filter coefficients according to the current error signal. We use a scalar ʈ to specify the 

scaling factor that controls how big of a change is made in the filter coefficient. The bigger the step, the 

less time it takes for the adaptive filter to converge such that the error signal is minimized. However, if 

the step size is too large, we run the risk of causing our system to become unstable. Equation 1 defines 

the LMS filter algorithm where b[k,n] is the kth filter coefficient used when sample x[n] has just been 

received. ʈ is the scaling factor, and e[n] is the difference between d[n] and y[n] where d[n] is the 

output of the unknown signal and y[n] is the output of our adaptive filter. 

ὦὯȟὲ ρ  ὦὯȟὲ ʈὩὲὼὲ  Ὧ               Ὧ  πȟρȟȢȢȢȟὔ ρ 

Equation 1: Least Mean Squares Filter Algorithm 

Methods  

The FIR filter we had implemented in Lab 2 was a 73rd order bandpass filter. To convert it to an adaptive 

filter, we implemented the LMS algorithm to update the filter coefficients according to the algorithm 

outlined above. After adding the 4-5 lines of code necessary to implement the algorithm, we sought to 

Řƻ ŀ ǾŜǊȅ ōŀǎƛŎ ǾŜǊƛŦƛŎŀǘƛƻƴ ǘƘŀǘ ƻǳǊ ŀŘŘƛǘƛƻƴŀƭ ŎƻŘŜ ŘƛŘƴΩǘ ōǊŜŀƪ ƻǳǊ CLw ŦƛƭǘŜǊΦ ¢ƻ ŀŎŎƻƳǇƭƛǎƘ ǘƘƛǎΣ ǿŜ ǎŜǘ 

ʈ to 0 and left the filter coefficients as their previous values used to implement a bandpass filter. When 

attempting to run this new code, we discovered that our additional computations resulted in our ISR 

exceeding the real-time requirements. To fix this issue, we enabled compiler optimization, which 

brought our execution cycles significantly under the ~5100 cycle limit. 



Next, in order to verify that our adaptive filter functioned properly, we fabricated inputs simulating the 

system identification scenario for a known system. For our known system, we used the bandpass filter 

from labs 2 through 4. To simulate this, we used MATLAB and generated white noise as our x[n] signal. 

²Ŝ ǘƘŜƴ ƎŜƴŜǊŀǘŜŘ ǘƘŜ ŀǇǇǊƻǇǊƛŀǘŜ CLw ŦƛƭǘŜǊ ŎƻŜŦŦƛŎƛŜƴǘǎ ŀƴŘ ǳǎŜŘ a!¢[!.Ωǎ ŦƛƭǘŜǊ Ŧǳƴction to filter x[n]. 

The output of our filter became d[n]. We set x[n] and d[n] as the left and right channels of a WAV file so 

we could output the signals to the DSP board. 

To perform the test, we connected the audio out from the PC to the line in on the DSP board and the 

line out on the DSP board to the microphone input of the PC. This setup allowed us to send our custom 

signals to the DSP and record the DSP output to verify proper functionality of our adaptive filter. 

When we first started testing our adaptive filter, we chose a very small value of ʈ to ensure that our 

adaptive filter would converge. We decided that since there is no time limit on performing However, 

even with this design decision, we observed in the watch window that our filter coefficients were 

exploding after running for a few seconds. We determined that this was due to a sign reversal in our 

implemented algorithm. In the example provided in class, the scaled error is subtracted from the current 

filter coefficients. However, this requires that ʈ be negative. We had made our ʈ positive and therefore 

decided to alter our code to add the scaled error to the filter coefficients instead of subtracting. This 

change in the algorithm can be seen in Equation 2. 

ὦὯȟὲ ρ  ὦὯȟὲ ʈὩὲὼὲ  Ὧ               Ὧ  πȟρȟȢȢȢȟὔ ρ 

Equation 2: Modified LMS Algorithm 

Problem Solution  

System Identification  

Our final implementation of the LMS algorithm followed the process sequence outlined in Figure 1. The 

inputs to our system identification module are the primary input signal x[n] (left channel) and the output 

of the unknown system d[n] (right channel). Using our FIR filter and the LMS algorithm, we generate our 

outputs e[n] and y[n]. When our adaptive filter has converged, e[n] converges to 0 and y[n] matches 

d[n]. 



Convert x[n] and 

d[n] to floats

Perform FIR 

filtering using B 

and x[n]

Calculate

e[n] = d[n]-y[n]

Update B through 

LMS algorithm

Send e[n] and y[n] 

to left and right 

outputs

 

Figure 1: LMS Algorithm Implementation Flowchart 

Noise Cancellation  

The implementation to perform noise cancellation is almost identical to the configuration used for 

system identification. The one difference is that the input signals for noise cancellation are switched. 

Now, the noise is coming in on the right channel and the noisy music is coming in on the left channel. 

The sequence of operations performed on the inputs is unchanged from our system identification 

implementation. 

Results 

Here we present the results of our efforts to implement the Least Mean Squares algorithm on the C6713 

DSK.  

Part 1 ɀ System Identification  

In this part, we discuss the results of the tests performed on the LMS system identification algorithm 

which was implemented as described above. 

Maximum Value of Ⱨ 

In order to get a working algorithm an appropriate value of the filter update step-size, ‘, must first be 

chosen. Iterative testing of values for ‘ resulted in picking a value of 1e-10 for accurate convergence of 

the algorithm. The value of ‘ can be increased to about 1e-7 at which point any larger values saturate 

the size of the floating point container however even at 1e-7 the coefficients are wildly unstable 

resulting in a poor if completely inaccurate filter impulse response. The value of 1e-10 was chosen for 

these tests because it resulted in a very stable convergence that did not take unreasonably long to 

converge. 

Functionality Testing With a Known System  

We first tested the system identification algorithm with a known system we designed. A 72nd order 

elliptic FIR band-pass filter was designed and applied to a white noise signal. The unfiltered and filtered 

white noise was then applied to the left and right input to the DSK running the system identification 

algorithm. After giving the algorithm approximately 10 seconds to converge, the output was recorded 



with MATLAB and the adapted filter coefficients saved from the C6713 memory. Figure 2 shows the 

frequency response of the filter designed in MATLAB and used as the system to be identified along with 

the response of the filter resulting from the LMS algorithm. These two responses match up near 

perfectly (except for a gain offset necessary because of scaling in the computer and DSK codecs) 

indicating successful implementation of an LMS algorithm that converges properly. Figure 3 shows the 

error values computed for each sample by the LMS algorithm as output from the DSK. These values are 

very small compared to the filter signal output further indicating correct convergence of the filter. 

 

Figure 2: Designed and Adapted Frequency Responses (top) and Impulse Responses (bottom) for a known system applied to 
the LMS system identification algorithm. 
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Figure 3: Error value calculated for each sample as used in the LMS algorithm. This is shown against the adapted filter output 
for size comparison. 

Since the system being identified was known to be of 72nd order, an adaptive filter of the same order 

was used for this test and the coefficients produced by MATLAB can be seen in plotted in Figure 4. After 

the LMS algorithm was allowed to converge with this system as the input, the coefficients produced by 

the LMS algorithm were saved from the C6713 memory and are shown alongside the coefficients 

produced by MATLAB in Figure 4. This further confirms the correct convergence of the LMS algorithm on 

the impulse response of the input system as all the coefficients match up very closely, if not perfectly 

throughout the 72nd order filter. These slight discrepancies can be attributed to quantization noise and 

other analog noise and imperfections in the two digital to analog converters and two analog to digital 

converters used in the signal chain of this test as well as the slight imperfections of the audio player 

used when the input signals were repeated. 
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Figure 4: A stem plot of the impulse responses of the known system for both the MATLAB generated filter coefficients and 
the adapted filter coefficients. 

Identification  of Unknown System 1   

Figure 5 shows the frequency response of the filter adapted by the LMS algorithm to the input of 

unknown system 1 provided with the lab instructions. The similarity between filter lengths 10 and 50 

compared to the filter length 9 indicates that the unknown system is of order 10. From the order 10 

response, we can conclude that this system likely consists of a 3.5kHz low-pass filter with a particularly 

low rejection around 10kHz. Figure 6 further shows that the unknown system is likely of order 10 

because all coefficients above 10 are essentially zero. 
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Figure 5: Frequency response of the filter adapted to unknown system 1 for several different filter lengths.  

 
Figure 6: Impulse response of adapted filter for unknown system 1 shown for several different filter orders. 

Identification of Unknown System 2  

The second unknown system provided with the laboratory assignment was tested with the LMS 

algorithm and the adapted frequency response is shown in Figure 7. From this, we can see that the 
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4.5kHz and 9.5kHz. Figure 8 further confirms the filter order of about 64 by showing the impulse 

response for the three adaptive filter orders that were tested. 

 

Figure 7: Frequency Response of Unknown System 2 for adaptive filter orders 50, 62, and 100. 
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Figure 8: Impulse responses for several adaptations to unknown system 2. 

Identification of Unknown System 3  

The last unknown system provided for identification produced the frequency response shown in Figure 

9. As is indicated by the large error signal output by LMS algorithm for unknown system 3, as can be 

seen in Figure 10, the LMS algorithm did not completely converge system did not seem to completely 

converge for this unknown system. The largest adaptive FIR filter we could implement on the DSK is of 

order 150, but this was not enough to cause the filter to converge. This may be either because the filter 

in the unknown system is of order larger than 150, or possibly that the filter is an Infinite Impulse 

Response filter, which would require an infinite number of FIR filter coefficients to replicate. 
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Figure 9: Frequency response for several orders of filter adapted to unknown system 3. 

 

Figure 10: Error between adapted filter output and unknown system input for each samples compared to the Adapted Filter 
Output. 
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Part 2 ɀ Noise Cancellation  

The second section of this laboratory assignment is concerned with implementing noise cancelling 

algorithms with the same Least Mean Squares algorithm used for the system identification purpose. An 

example signal and overlaid noise were provided with this laboratory assignment that we played 

through the noise cancelling algorithm running on the DSK to confirm its proper functioning. The 

example signal with overlaid noise consists of a Pink Floyd song (the signal) overlaid with band-passed 

white noise with the pass band jumping upwards every few seconds. The noise cancellation algorithm 

had to re-adjust for each sudden change of the noise system.  Figure 11 shows a spectrogram of the 

input signal with overlaid noise as it was input to the left channel of the DSK running the noise 

cancellation algorithm. The noise is the dominant sound in this signal, and almost completely obscures 

the music when heard.  

 

Figure 11: Signal and noise input to the noise cancellation algorithm. The noise can be seen as the staircase of intensity, 
while the signal is mostly obscured by the noise, except for in the lower right corner. 

Figure 12 shows the right input to the noise cancellation algorithm, the pure noise that was filtered 

before overlaying on the desired signal. The algorithm uses this signal as the correlated input to be 

filtered before subtraction from the input signal with noise. 



 

Figure 12: Spectrogram of pure noise input to noise cancellation algorithm. 

Figure 13 shows the noise cancelled output of the working noise cancellation algorithm using an LMS 

update step size, ‘, of 0.011 and an adapted filter order of 150. While the noise has not been completely 

cancelled, even after the algorithm has converged, the signal amplitude over the noise amplitude is 

significantly better ς the music signal is now visible in the top left corner, unlike in the spectrogram of 

Figure 11 and the noise cancelled output sounds significantly better to the ear as well. 

                                                           
1
 This value of ‘ is significantly larger than the one used in Part 1 because a different scaling was applied to the 

input and output signals for part 2 because the value of ‘ was running up against the limits of the Eclipse watch 
window. 



 

Figure 13: Noise cancelled signal with an LMS update step size, Ⱨ, of 0.01 and an adapted filter order 150. 

Both the LMS update step size and the adapted filter order was adjusted to observe the effect they had 

on the noise cancellation. Figure 14 shows noise canceled signal with an adapted filter order of 50 

instead of the order 150 used in Figure 13. This decreases the performance of the noise cancellation 

both visibly and audibly. 



 

Figure 14: Noise cancelled signal with an LMS update step size of 0.01 and an adapted filter order 50 

The best value of step size was determined experimentally to be ‘ πȢπρ. Larger values produced too 

much distortion of the desired signal, and smaller values did not finish converging before the noise 

changed. Figure 15 shows an example where the update size is too small, resulting in residual filtering of 

parts of the signal that no longer have noise applied. Figure 16 shows the opposite end of the spectrum, 

with a step size that is too large. The adaptive filter is still relatively stable; quickly removing any noise, 

however when listening to the output of the algorithm with these parameters it can be seen that the 

algorithm is starting to distort the desired music signal. 



 

Figure 15: Spectrum of noise cancelled signal for an update step size of 0.001. Here the filter does not adapt fast enough to 
keep up with the changing noise. 

 

Figure 16: Spectrum of noise cancelled signal for an update step size of 0.05. It is not immediately obvious from this 
spectrogram, but the adaptive filter with this step size was significantly distorting the desired signal. 

  


