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Introduction

In this lab, we develop an adaptive FIR filter and showcase its utility in system identification and noise
cancelling. Using the FIR filter developed in Lab 2, we implement the Least Mean Squares algorithm to
turn the original FIR filter into an adaptiviidr. Using our newly developed adaptive filter, we identify

the functionality of several black box systems. Then, as a demonstration ofwaddluse for adaptive

filters, we use our adaptive filter to perform retiaine noise cancelling.

Background

Least Mean Squares

Our adaptive filter is implemented using the Least Mean Squatd$Salgorithm.The goal of the LMS
algorithm is to minimize the error signal being fed back into the adaptive filter. This is accomplished by
updating the filter coefficiers according to theurrent error signal. We useszalar to specif the

scaling factor that controls how big of a change is made in the filter coefficient. The bigger the step, the
less time it takes for the adaptive filter to converge such that the error signal is minimized. However, if
the step size is too large, we rihe risk of causing our system to become unstaBlguationl defines

the LMS filter algorithm where b[k,n] is th& filter coefficient used when sample x[n] hassj been
received{ is the scaling factor, and e[n] is the difference between d[n] and y[n] where d[n] is the

output of the unknown signal and y[n] is the output of our adaptive filter.
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Equationl: Least Mean Squares Filter Algorithm

Methods

The FIR filter we had implemented in Lab 2 was"aof@er bandpass filter. To convert it to an adaptive

filter, we implemented the LMS algorithm to update the filiewefficientsaccording to the algorithm

outlined above After adding the % lines & code necessary to implement the algorithm, we sought to
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t to 0 and left the filter coefficients as their previous values used to implement a bandpass filter. When
attempting to run this new code, we discovered that our additional computations resulted in our ISR
exceeding the reaime requirements. To fix this i88, we enabled compiler optimization, which

brought our execution cycles significantly under the ~5100 cycle limit.



Next, n order to verify that our adaptive filter functioned properly, we fabricated inputs simulating the

system identification scenario f@ known systemfor our known system, we uséltke bandpass filter

from labs 2 through 4. To simulate this, we used MATLAB and generated white noise as our x[n] signal.
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The output of our filter became d[nfWe set x[n] and d[n] as the left and right channels of a WAYV file so

we could output the signals to the DSP board.

To perform the test, we connected the audio out from the PC to the line in oD8f board and the
line out on the DSP board to the microphone input of the H@s setup allowed us to send our custom

signals to the DSP and record the DSP output to verify proper functionality of our adaptive filter.

When we first started testing ourdaptive filter, we chose a very small valug db ensure that our
adaptive filter would convergale decided that since there is no time limit on performitgwever,

even with this design decision, we observed in the watch window that our filter coefficients were
exploding after running for a few seconds. We determined that this was due to a sign reversal in our
implemented algorithm. In the example providaddlass, the scaled error is subtracted from the current
filter coefficients. However, this requires thabe negative. We had made opositive and therefore
decided to alter our code to add the scaled enothe filter coefficients instead of subteting. This

change in the algorithm can be seerBqguation2.
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Equation2: Modified LMS Algorithm

Problem Solution

System Identification

Our final implementation of the LMS algorithm followed the process sequence outlifgdurel. The

inputs to our system identificatiomodule are the primary input signal x[n] (left channel) and the output

of the unknown system d[n] (right channel). Using our FIR filter and the LMS algorithm, we generate our
outputs e[n] and yf]. When our adaptive filter has converged, e[n] converges to 0 and y[n] matches

d[n].
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Figurel: LMS Algorithm Implementation Flowchart

Noise Cancellation

The implementation to perform noiseancellation is almost identical to the configuration used for
system identification. The one difference is that the input signals for noise cancellation are switched.
Now, the noise is coming in on the right chanaedl the noisy music is coming in on tlaé channel.

The sequence of operations performed on the inputs is unchanged from our system identification

implementation.

Results
Here we present the results of our efforts to implement the Least Mean Squares algorithm on the C6713
DSK.

Part 1 z System Identification
In this part, we discuss the results of the tests performed on the LMS system identification algorithm

which was implemented as described above.

Maximum Value of H
In order to get a working algorithm an appropriate value of the filteratpdstepsize,’ , must first be

chosen. Iterative testing of values foresulted in picking a value of 11® for accurate convergence of
the algorithm. The value of can be increased to about Z&at which point any larger values saturate
the size othe floating point container however even at-¥ethe coefficients are wildly unstable
resulting in a poor if completely inaccurate filter impulse response. The valuelif d&s chosen for
these tests because it resulted in a very stable convergendalitianot take unreasonably long to

converge.

Functionality Testing With a Known System
We first tested the system identification algorithm with a known system we designed® Ar@2r

elliptic FIR bangbass filter was designed and applied to a white eaignal. The unfiltered and filtered
white noise was then applied to the left and right input to the DSK running the system identification

algorithm. After giving the algorithm approximately 10 seconds to converge, the output was recorded



with MATLAB anthe adapted filter coefficients saved from the C6713 memBbigure2 shows the

frequency response of the filter designed in MATLAB and used as the system to bieeidlatding with

the response of the filter resulting from the LMS algorithm. These two responses match up near
perfectly (except for a gain offset necessary because of scaling in the computer and DSK codecs)
indicating successful implementation of an LM@&thm that converges properlfrigure3 shows the

error values computed for each sample by the LMS algorithm as output from the DSK. These values are

very small compared to the filter signal output further indicating correct convergence of the filter.
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Figure2: Designed and Adapted Frequency Respon@dep) and Impulse Responses (bottom) for a known system applied to
the LMS system identi€ation algorithm.
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Figure3: Error value calculated for each sample as used in the LMS algorithm. This is shown against the adapted filter output
for size comparison.

Since the system being identified was known to be 8f @&er, an adaptive filterof the same order

was used for this tesaind the coefficients produced by MATLAB can be seen in plotteidjimed. After

the LMS algorithmvas allowed to converge with this system as the input, the coefficients produced by
the LMS algorithm were saved from the C6713 memory and are shown alongside the coefficients
produced by MATLAB kigure4. This further confirms the correct convergence of the LMS algorithm on
the impulse response of the input system as all the coefficients match up very closely, if not perfectly
throughout the 72° order filter. Theseslight discrepancies can be attributed to quantization noise and
other analog noise and imperfections in the two digital to analog converters and two analog to digital
converters used in the signal chain of this test as well as the slight imperfectitns axidio player

used when the input signals were repeated.



System Identification - Known System - Impulse Response
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Figure4: A stem plot of the impulse responses of the known system for both the MATLAB generated filter coefficients and
the adapted filter coefficients.

Identification of Unknown System 1
Figureb shows the frequency response of the filter adapted by the LMS algorithm to the input of

unknown system 1 provided with the lab instrigts. The similarity between filter lengths 10 and 50
compared to the filter length 9 indicates that the unknown system is of order 10. From the order 10
response, we can conclude that this system likely consists of a 3.5kHasavilter with a particalrly
low rejection around 10kHEigure6 further shows that the unknown system is likely of order 10

because all coefficients above 10 are essentially zero.



System Identification - Unknown System 1 - Frequency Response
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Figure5: Frequency response of the filter adapted to unknown system 1 for several different filter lengths.
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Figure6: Impulse response of adapted filter for unknown system 1 shown for several different fitteters.

Identification of Unknown System 2
The second unknown system provided with the laboratory assignment was tested with the LMS

algorithm and the adapted frequency response is showrigire7. From this, we can see that the
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4.5kHz and 9.5kHEigure8 further confirms the filter order of about 64 by showing the impulse

response for the three adaptive filter orders that were tested.
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Figure7: Frequency Response binknown System 2 for adaptive filter orders 50, 62, and 100.



System Identification - Unknown System 2 - Impulse Response

0.4
—® Adapted Impulse Response Order 100
0.3~ @ —©® Adapted Impulse Response Order 62
0 o —® Adapted Impulse Response Order 50

o 0.2
©
2
e
g 0.1
: %] f
0 © o e O, O AR R AR AR R A B
o Lf% Lii i‘li &1
@
@]
© 0.1

-0.2-

-0.3 r r r r r r r r r L

10 20 30 40 50 60 70 80 90 100
coefficient index

Figure8: Impulse responses for several adaptations to unknown system 2.

Identification of Unknown System 3
The last unknown system provided for identification prodiitiee frequency response shownHkigure

9. As is indicated by the large error signal output by LMS algorithm for unknown system 3, as can be
seen inFigurel0, the LMS algorithm did not completely converge system did not seem to completely
converge for this unknown system. The largest adaptive FIR filter we could implement D8 khis of

order 150, but this was not enough to cause the filter to converge. This may be either because the filter
in the unknown system is of order larger than 150, or possibly that the filter is an Infinite Impulse

Response filter, which would requira infinite number of FIR filter coefficients to replicate.



Figure9: Frequency response for several orders of filter adapted to unknown system 3.
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Figurel0: Error between adapted filter output andinknown system input for each samples compared to the Adapted Filter
Output.



Part 2 z Noise Cancellation

The second section of this laboratory assignment is concerned with implementing noise cancelling
algorithms with the same Least Mean Squares algorithm used for the system identification purpose. An
example signal and overlaid noise were provided with lddi@ratory assignment that we played

through the noise cancelling algorithm running on the DSK to confirm its proper functioning. The
example signal with overlaid noise consists of a Pink Floyd song (the signal) overlaid witfassed

white noise with he pass band jumping upwards every few seconds. The noise cancellation algorithm
had to readjust for each sudden change of the noise systéigurell shows a specbgram of the

input signal with overlaid noise as it was input to the left channel of the DSK running the noise
cancellation algorithm. The noise is the dominant sound in this signal, and almost completely obscures

the music when heard.
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Figurell: Signal and noise input to the noise cancellation algorithm. The noise can be seen as the staircase of intensity,
while the signal is mostly obscured by the noise, except for in the lower right corner.

Figurel2 shows the right input to the noise cancellation algorithm, the pure noise that was filtered

before overlaying on the desired signal. The algorithm uses this signal as the correlated ipgut to

filtered before subtraction from the input signal with noise.



Spectrogram of Input Maoise

15000 55
: -0
-0
10000 1-70
{20
[}
T
: 490
5000
-100
110
ol 120
0 5 10 15 20

Time (Seconds)

Figurel2: Spectrogram of pure noise input to noise cancellation algorithm.

Figurel3shows the noise cancelled output of the working noise cancellation algorithm using an LMS
update step siz€,, of 0.0 and an adapted filter order of 150. While the noise has not been completely
cancelled, even after the algorithm has convetgee signal amplitude over the noise amplitude is
significantly betterg the music signal is now visible in the top left corner, unlike in the spectrogram of

Figurelland the noise cancelled output sounds significantly better to the ear as well.

! This value of is significantly larger than the one used in Part 1 because a different scaling was applied to the
input and output signals for part 2 because the valué @fasrunning up against the limits of the Eclipse watch
window.
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Figurel3: Noise cancelled signal with an LMS update step sifegf 0.01 and an adapted filter order 150.
Both the LMS update step size and #dapted filter order was adjusted to observe the effect they had
on the noise cancellatiorkigurel4 shows noise canceled signal with an adapted filter order of 50
instead of the order 150 used Figurel3. This decreases the performance of the noise cancellation

both visibly and audibly.



5 ' 10 5 om
Time (Seconds)

Figurel4: Noise cancelled signal with an LMS update step size of 0.01 and an adapted filter order 50

The best value of step size was determined experimentally to ba@t p Larger values produced too
much distortion of the desired signal, and smaller values didinisth converging before the noise
changedFigurel5shows an example where the update size is too small, resulting in residual filtering of
parts of the signal thtano longer have noise applieBigurel6 shows the opposite end of the spectrum,
with a step size that is too large. The adaptive filter is still relatively stabieklg removing any noise,
however when listening to the output of the algorithm with these parameters it can be seen that the

algorithm is starting to distort the desired music signal.



Figurel5: Spectrum of noise cancelled sighfor an update step size of 0.001. Here the filter does not adapt fast enough to
keep up with the changing noise.

Figurel6: Spectrum of noise cancelled signal for an update step size of 0.05. It is not immediately obviougHi®m
spectrogram, but the adaptive filter with this step size was significantly distorting the desired signal.



