
DSP-based Oscillator Synchronization for Virtual

Phased Array Development

Kurt Snieckus

March 5, 2012



Introduction

Beamforming is a directional signal propagation technique in which multiple
elements are used to transmit or receive the same signal with different phases and
amplitudes to allow for directional RF prorogation. The oscillators driving the
elements used in beamforming systems always need to be synchronized to within
a small fraction of the carrier period to function correctly. In the development of
new ”Virtual Phased Array” systems, where there is no master oscillator source
to synchronize the transmitters or receivers, it is necessary to have a system to
synchronize the oscillators on an extremely precise level in a distributed way.[1]
This report details the beginnings of the implementation of a proof of concept
oscillator synchronization system based around low-cost DSP hardware running
at audio frequencies.

Background

The system developed in this report consists of an algorithm running on DSP
hardware that receives bursts of sinusoidal oscillation, and produces a continu-
ous oscillation synchronized to the bursts. This will allow for a system of many
nodes to be sending bursts of oscillation to each other while synchronizing them-
selves with the bursts from other nodes resulting in each node being accurately
synchronized with all the other nodes. Several signal processing techniques need
to be combined to create this system. The incoming burst needs to be detected,
the phase offset needs to be calculated and a local oscillator needs to be gener-
ated. Future systems will also implement a Kalman filter to keep the oscillator
synchronized between bursts. This section will explain the theory behind the
implementation of these components.

Signal Detection

To detect the incoming burst of sinusoidal oscillation, the input signal is con-
tinuously cross correlated with a generated sinusoidal signal of the approximate
same frequency. The following equation describes cross correlation for a buffer
size of N , where x[n] is the incoming signal buffer and s[n] is the generated
signal buffer, and y[n] is the result.[2]

y[n] =

N/2
∑

n=−N/2

x[n]s[n+m]

This works to detect the incoming signal even for the expected slight vari-
ations in generated signal frequency and phase vs. incoming signal frequency
and phase.

1



Phase Determination

The most obvious way to determine the phase of an incoming signal is through
down-mixing with a local oscillator. Here ωi is the frequency of the internal
oscillator, ωe is the frequency of the input signal, φe is the phase offset of the
external signal relative to the internal oscillator, and A is the incoming signal
amplitude.

sin(ωit)A sin(ωet+ φe) =
1

2
(A cos((ωe − ωi)t+ φe)−A cos((ωe + ωi)t+ φe))

Next we apply a low pass filter to remove the term with the (ωe+ωi) leaving
us with.

LPF

{

1

2
(A cos((ωe − ωi)t+ φe)−A cos((ωe + ωi)t+ φe))

}

=
1

2
(A cos ((ωe − ωi) t+ φe)

This will give a very low frequency sine wave that contains the phase offset
φe. Next we assume that ωe ≈ ωi which gives the following equation.

1

2
(A cos ((ωe − ωi) t+ φe) =

1

2
A cosφe

Now we if we divide out the gain A and 1

2
term we can take the inverse

cosine to get the resulting phase offset we desire.

arccos cosφe = φe

This method is not desirable however, because of the dependency on knowing
the gain of the incoming signal. The incoming signal gain is not necessarily
constant because of potentially varying channel conditions and an automatic
gain control does not estimate the gain accurately enough. We need an alternate
method to determine the phase offset of the incoming signal.

The alternate method used here is by way of a maximum likelihood estima-
tor. The following equation produces a phase estimate of the unknown signal
x[n] of length N having a frequency estimate of f̂o.[3]

φ̂ = arctan
−

∑N−1

n=0
x[n] sin 2πf̂0n

∑N−1

n=0
x[n] cos 2πf̂0n

This computes a phase estimate regardless of the gain of the incoming signal
x[n] and does so with relatively few operations. The phase offset produced by
this computation is relative to the phase of the sampling producing the x[n].
Thus, to produce a consistent result, the buffer used by this algorithm must
always start at a multiple of sampling frequency divided by signal frequency.

2



Methods

The whole system was first simulated to verify that the theory used is correct
and provide a base system topology for implementation on real hardware. Once
the simulation was determined to function properly the system was implemented
with real signals on DSP hardware.

The implementation on the DSP used a mixture of sample and batch pro-
cessing techniques. Along with processes that are inherently sample based pro-
cesses, like filling the buffer and local oscillator generation, the signal detection
algorithm is computed for each sample because it determines when to stop fill-
ing the buffer which is a sample based process. The MLE phase estimation is
setup as a batch process because it requires a significant amount of resources,
and while for the base configuration of buffer lengths and sampling rates used
for these tests it could be run for each sample, this is unnecessary and for faster
synchronization frequencies and sampling rates it would only work in a batch
processing configuration. This also provides a place to add additional compu-
tations that only need to be run once for every burst like frequency estimation
and Kalman filtering.

A state machine facilitates the batch processing of the MLE phase estimate
and keeps the entire signal detection process and resulting phase estimate from
being triggered multiple times per burst. The state machine uses a counter to
keep track of the state as well as to determine a length of time to wait before
starting to run the signal detection algorithm again. The state machine counter
is both modified by the sampling processing code and the batch processing
code to advance the state, but is primarily controlled in the sample processing
function.

The signal detection algorithm was initially designed to cross correlate the
incoming signal with a generated sinusoidal signal for each sample period. This,
however, proved to be too resource intensive to accomplish for each sample. A
cross correlation function based upon the equation giving in the Background
section used a maximum of 1.209 ∗ 106 cycles for a buffer size of 100. This is
more than 43 times the number of cycles available to each sample at an 8kHz
sampling rate in the hardware configuration used here.

While a faster cross correlation algorithm can be implemented with FFTs,
this was found to be unnecessary. Only the maximum of the output of the cross
correlation is taken and compared to a threshold to determine if the signal is
present. This maximum was found via simulation to always occur when the
two buffers were lined up with each other (when m = 0 in the cross correlation
equation given in the Background section). Simulations confirmed that simply
taking the dot product of the buffer with the generated signal produced the same
result. Because this is done for each sample, it is essentially taking a continuous
cross correlation, and results in significantly reduced resource usage. With this
scheme only 5950 cycles were needed to compute the dot product which is only
21% of the cycles available for each sample at an 8kHz sampling rate.

The Maximum Likelihood Estimator was chosen as described in the Back-
ground section because it is not dependent on the incoming signal gain to cal-

3





based processing is started again, filling the buffer and looking for the incoming
burst. Figure 1 shows the parts and the flow of information in the system. It
also denotes the difference between batch and sample based processing.

Simulation

Initially, a MATLAB script was written to simulate the incoming bursts, signal
detection, and phase estimation. The script generates a gated sine wave at a
frequency very close to 1kHz, to simulate a real system where the clocks are not
synchronized. It then iterates over each sample of the generated incoming signal.
It fills a small buffer with the ”incoming signal” and takes the dot product of
the buffer with a sine wave generated at 1kHz. Once the dot product output
is greater than a value of 45 and the index of the incoming signal is a multiple
of the signal frequency divided by the sample frequency—8 in this case—the
MLE phase estimate of the buffer is computed and stored in another buffer.
Once the entire sequence has been iterated over, plots of the incoming signal,
the dot-product output for each sample and the phase estimates are produced
to confirm proper operation.

Hardware Implementation

Once the simulation produced the expected output, the system was implemented
on a Spectrum Digital TMS320C6713 DSK. This DSP development board in-
cludes audio input and output facilities via an AIC23 Codec that can run at
varying sample rates. For this implementation, a sampling rate of 8kHz was
used. The Texas Instruments C6713 DSP on the Spectrum Digital DSK board
runs at 225mHz. For the 8kHz sampling rate used, 28125 CPU cycles are avail-
able to process each sample. For these tests, a 1kHz oscillator frequency was
used, but every effort was made to allow easy configuration of any oscillator
frequency.

An Agilent 33220A Function Generator was used to produce the gated sine
wave output. It was set for a sine wave frequency of 1kHz, a burst length of 20
cycles—160 samples for the DSP—and a burst period of 1 second. The natural
variation in the function generator clock and the clock of the codec feeding
samples to the DSP caused the desired slight variation in the frequency of a
1kHz sine wave generated by the DSP to the 1kHz sine wave from the function
generator. The output of the function generator was supplied to the left and
right inputs to the codec on DSK DSP board and an oscilloscope. The output
from the codec was also connected to the oscilloscope for comparison to the
function generator signal. The system as connected can be see in Figure 2.

The algorithm running on the DSP was setup as in Figure 1. The sample
processing elements are run in an interrupt service routine that gets triggered
every time a new sample is available from the codec, once every 28125 CPU
cycles. The ISR runs certain sample based processes based on the current
state of the state machine. The batch processes are run from the main program

5



C6713 DSK

L     R

Input

Oscilloscope

L     R

Output

Function 

Generator
Output

Channel

1      2      3     4

Figure 2: Diagram of the connection of the DSP board to test equipment.

”while(1)” loop, depending on the state of the state machine. The state machine
has the following 4 states:

1. The initial state fills the buffer and takes the dot product of the buffer
with the generated signal for correlation. If the dot product is greater
than a threshold, the state machine goes to state 2.

2. In this state, the signal has been detected, but the buffer still needs to
filled until a period boundary is reached for proper phase estimation. Once
the period counter reaches 0, the state is incremented.

3. State 3 initiates the MLE phase estimation in the main program loop.
Filling of the buffer is stopped so as not to corrupt the MLE calculation
operating on the same buffer, and the dot-product calculation is stopped
to free up CPU cycles. Once the phase estimate is generated and saved,
the state is incremented.

4. This final state restarts filling the buffer, and starts a counter of samples
to make sure the buffer is sufficiently void of pulse samples so that another
dot-product correlation will not trigger the system again for the pulse that
has already been processed. After this counter reaches its limit the state
is reset to 1.

Outside of the state machine, the local oscillator generation is run for every
ISR call. It uses the same counter that keeps track of the period. The local
oscillator with the last phase estimation is output on the left channel of the
codec, to be viewed on an oscilloscope. A further constant phase offset is applied
to this output to account for latency in the DSP system. This results in the
synchronized local oscillator lining up perfectly with the input signal burst.

6



The right channel output of the codec contains debugging information. It’s
an output of a non-phase-corrected local oscillator amplitude modulated with
the current phase estimation. Signal is only output during states 3 and 4 of the
state machine, to confirm when they are triggered.

Results

After working out bugs in the code, the simulation and hardware implemen-
tation worked as expected. Some basic robustness tests were performed on
the hardware implementation, and the code was profiled to determine what
resources are used by the implementation.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.5

0

0.5

1

time

am
pl

itu
de

Gated Sine Wave Input Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

time

am
pl

itu
de

Cross Correlation of Sine wave with Input Signal

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

−1

0

1

2

time

ph
as

e

Phase Estimate

Figure 3: Output of MATLAB simulation

7



System Simulation

The system was simulated with a MATLAB script roughly approximating what
would be implemented in hardware. Figure 3 shows the output of the simulation.
The first plot shows the incoming gated sinusoid as generated by the script.
The second plot shows the dot-product correlation of the input signal, which
has peaks at expected times. The final plot shows the phase estimates for each
pulse which are steadily decreasing, as expected for the frequency offset used in
the simulation.

Implementation on C6713 DSK

An oscilloscope trace of the output from the DSK running the phase estimation
algorithm is shown in Figure 4. The magenta sinusoid on channel 3 is the input
to the algorithm, and it can be seen that once the algorithm computes the phase
offset, which occurs when the bottom debugging signal starts, a discontinuity
occurs in the yellow signal on channel 1 resulting in the two signals being syn-
chronized. In this particular instance, a phase flip has also occurred, bringing
the signal from π radians phase difference to 0 radians phase difference. The
cyan waveform on channel 2 is the debugging waveform, started when the MLE
phase computation is triggered and modulated to the size of the phase estimate
generated by that MLE computation. A few samples are output at normal
amplitude at the beginning to provide a triggering point for the oscilloscope.

Figure 4: Oscilloscope traces of the DSP output signals, channel 1 and 2, and
the function generator input signal, channel 3

Figure 5 shows a plot of the phase estimates generated by the DSP. These
were stored in a 200 point buffer before the DSP program was paused and the

8



values downloaded from DSP memory and plotted with MATLAB. The figure
clearly shows that the MLE produces fairly accurate phase estimates every time,
and that the phase wraps every π

2
radians.

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
P

ha
se

Samples [1 Sample/Second]

Phase Estimates from DSK

Figure 5: Phase results computed by DSP

Table 1 shows the results of profiling the code run on the DSP with a cycle-
accurate simulator. These results indicate that the DSP has a significant amount
of resources to spare for all the processes and that the code could easily be run
at higher clock speeds. Specifically of concern is the dot prod() function which
needs to be run every cycle when looking for a pulse. In the configuration used
for these tests, the dot prod() function only used 29% of the available CPU
cycles for each sample. If the sampling rate were to be increased significantly,
the size of the buffer dot prod() is run on may need to be decreased or the
function pipelined, or both.

Function Calls Max Cycles
dot prod() 298 5950
Sample ISR 90302 7040
lo() 180306 460
mle() 298 10873

Table 1: Inclusive maximum cycles from the TI cycle-accurate simulator for
signal processing functions with a buffer length of 100 samples.

9



Conclusions

This system is the first step is development of virtual phased array implemen-
tations. This report details the successful implementation of an oscillator phase
offset determination scheme, providing the basis for a full oscillator synchro-
nization system that can then be scaled up in frequency for use in RF systems.
Further work from here would involve developing a phase unwrapping algorithm,
determining frequency offsets from the slope of the generated phase estimates,
and then a Kalman filter system to provide a truly synchronized oscillator. At
that point two or more DSPs could be setup to send their pulses to one other
resulting in their oscillators being fully synchronized.

10



Bibliography

[1] Robert D. Preuss and D. Richard Brown III. Two-way synchronization for
coordinated multicell retrodirective downlink beamforming. IEEE Transac-

tions on Signal Processing, 59(11):5415–5427, 2011.

[2] William A. Sethares C. Richard Johnson Jr. and Andrew G. Klein. Software
Reciever Design. Cambridge University Press, 2011.

[3] Steven M. Kay. Fundamentals of Statistical Signal Processing : Estimation

Theory. Prentice-Hall, 1993.

11


